The original documents are located in Box 14, folder "Energy - Federal Energy Administration: Hydropower Workshop" of the John Marsh Files at the Gerald R. Ford Presidential Library.

Copyright Notice

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Gerald R. Ford donated to the United States of America his copyrights in all of his unpublished writings in National Archives collections. Works prepared by U.S. Government employees as part of their official duties are in the public domain. The copyrights to materials written by other individuals or organizations are presumed to remain with them. If you think any of the information displayed in the PDF is subject to a valid copyright claim, please contact the Gerald R. Ford Presidential Library.

Digitized from Box 14 of The John Marsh Files at the Gerald R. Ford Presidential Library

SUMMARY REPORT of HYDROPOWER WORKSHOP Noverber 4, 1976

1. On Thursday, November 4, 1976, a Federal interagency workshop on hydroelectric power development was sponsored by the Federal Energy Administration's Assistant Administrator for Energy Resource Development. It was attended by representatives of the eight Federal agencies with direct interests in hydroelectric power, namely the Corps of Engineers (COE), the Department of the Interior (DOI), the Energy Research and Development Administration (ERDA), the Federal Energy Administration (FEA), the Federal Power Commission (FPC), the Rural Electrification Administration (REA), the Tennessee Valley Authority (TVA), and Water Resources Council (WRC). The agenda and attendance list for the workshop are provided at TAB A and TAB B respectively. Summaries of the presentation and panels are listed below in chronological order.

2. Introductory Remarks

a. Mr. William Rosenberg expressed his appreciation for the interest shown by the various agencies in the workshop and welcomed their participation. He pointed out that hydropower is often overlooked or underemphasized in today's endeavor to find energy alternatives to imported oil and gas; nuclear, coal and the advanced technologies receive more publicity. He stressed that the Federal Energy Administration is prepared to cooperate with all the agencies to insure that hydropower receives proper consideration.

b. Mr. Robert Hanfling stated that FEA's funding and resource commitment to hydropower has been limited. Reliance has been in the Federal agencies with hydropower operational responsibilities to insure hydropower development is properly considered. He recognized that this approach can result in piecemeal planning and development. He mentioned the New England Federal Regional Council's report entitled <u>New England Hydroelectric Development Potential</u> as a positive effort to determine what potential exists for this energy alternative. In outlining the agenda of the workshop, he encouraged maximum participation by all attendees.

2

3. National Energy Outlook

To provide an overall framework for the workshop, Mr. David Nissen gave a brief description of how the National Energy Outlook is prepared; the contents, milestones, and the parties responsible for the various sections; and some of the preliminary results of the 1977 modeling efforts. The preliminary NEO/77 outline is provided at TAB C. Highlights of his presentation were:

- Project Independence Evaluation System (PIES) modeling was shaped by the 1973 oil embargo. There was the need to assess the impacts of oil imports and alternatives. Also there was a need to assess the demand response to various market forces.
- The National Energy Outlook has been evolutionary. In 1974 the primary focus was on oil imports and the possibilities of import substitution on the domestic supply and demand sides. In 1975, the demand side was completely re-specified. This led to a major re-evaluation of electric utilities policy.
- A brief description of the PIES modeling segments including electricity generation and capacity formation was given.
- The 1977 outlook for natural gas and oil is gloomier because of delays associated with routing Alaska gas to the lower 48 and delays in outer continental shelf development.
- In the electrical sector, the advantage of nuclear power over coal-fired generation is being re-examined.
- Hydropower can be expected to contribute a lesser segment of electric power (percentagewise) with passage of time.

4. FPC Hydropower Activities

a. Mr. Ronald Corso pointed out that FPC has statutory jurisdiction over all non-federal hydroelectric development projects. However, the courts have increasingly extended their jurisdiction in hydro projects via their decisions on litigation. He stated that there was intense interest by the utilities in pumped storage projects during the 1960-1970 time frame, but the environmental opposition to these projects with the associated delays/defeats has dampened their interests. Examples given were the Blue Ridge Project and the Middle Snake River decision. He distributed a copy of a recent presentation on <u>Private Sector Hydroelectric</u> <u>Development in the United States.</u> (TAB D). Today the trend appears to be toward smaller conventional hydroelectric installations. When considering hydroelectric development, one must recognize that the economics used have placed hydro in an unfair position. He encouraged discussion of this subject as well as the overlapping jurisdictions of Federal agencies (veto power) which adversely affect hydropower development.

b. Mr. Neal Jennings outlined FPC's efforts in providing data on developed and undeveloped hydro potential. He distributed a preliminary inventory of facilities (TAB E). He indicated that the FPC report covering hydroelectric power resources over 5 MW will be published sometime after beginning of 1977. Present figures are 57,000 MW developed and 114,000 MW undeveloped potential for conventional hydroelectric power.

5. Corps of Engineers Hydropower Activities (COE)

Mr. Gene Lawhun outlined the present and future COE activities in hydropower. He stated that COE had been directed by the Congressional Appropriations Committees to prepare a report identifying additional hydropower generating potential at all Corps projects (existing, under construction, and planned). COE has completed the report which is undergoing Administration review. He provided statistics on COE hydro capacity and construction as follows:

- COE operates and maintains 65 hydro projects consisting of 295 generating units with aggregate name-plate capacity of almost 16,000 MW.

- In 1975, COE facilities generated over 85 million megawatthours of net energy (equivalent of roughly 145 million barrels of oil).

- In 1975, five new plants consisting of 16 units added 1,228 MW of capacity.

- Under construction are:
 - Six multipurpose projects which contain 17 units totalling 927 MW to be completed by 1982.
 - At eight existing plants, 33 units are being added to increase capacity by 3,294 MW.

- Under study or having been studied are 35 new plants which could add an estimated 21,706 MW, if built.

He also pointed out that COE has moved into the slant-axis technology. First unit was installed at Ozark Lock and Dam on the Arkansas River in November 1972 followed by an additional 4 units completed in 1975. The project provides 100 MW (20 MW each) of capacity. Similarly 3 slant-axis units (20 MW each) were completed at Webbers Falls Lock and Dam in 1973. A six-unit plant being installed at the Harry S. Truman Dam in Missouri

¥7.

will add 160 MW in 1979. These six units are reversible blade units which provide 27 MW each as generators and 36,000 HP as motors.

Mr. Lawhun then passed out a summary developed from a list of 424 potential sites where new or additional hydropower could be installed (TAB F). This list was prepared at congressional request. He briefly explained the various categories of the projects. Some 250,760 MW of capacity with an estimated average annual production capability of 297,814,958 megawatt-hours were identified.

He then outlined COE's study activities as follows:

- Institute of Water Resources' 1975 study entitled <u>Hydroelectrical Power Potential at Corps of Engineer Projects.</u> It provided a broad framework for considering hydroelectric development. It identified a range of analytical and policy problems to be addressed and presented recommendations. He elaborated on key ones, such as (1) need for screening criteria and procedures to identify potential sites for more detailed examination; (2) changing economic value of hydropower; and (3) constraints, e.g., environmental.

- Feasibility studies of 24 sites possessing 20,000 MW of potential hydropower is in progress. This capacity includes a rather optimistic assessment of pumped storage potential.

- Phase I AE&D studies of 10 sites totalling 6,525 MW are in progress. Six of these are expansions of existing facilities.

- Studies show several existing and authorized projects in Southwestern Power Adminstration's marketing area could be expanded for additional peaking capacity, but marketing arrangements would have to be changed to make the addition attractive.

- The pumped-storage potential in Columbia and Snake River basins is underway. Insufficient information is available to provide estimates at this time.

- The recently enacted Water Resources Development Act of 1976 (P.L. 94-587) authorizes COE to undertake a comprehensive study of hydropower resources to include pumped storage potential, low head potential, efficient utilization of output, and additional installations at existing COE projects. The Act also authorizes \$5 million per year in 1978 and 1979 for feasibility studies of promising installations.

He indicated that the most promising area for developing additional hydroelectric capacity by COE will be add-ons.

6. Department of Interior Hydropower Activities

Mr. William Wilson distributed a handout (TAB G) and elaborated on the following points.

- DOI is the largest electricity marketing agency in the U.S.
- DOI markets the power generated from Corps of Engineers facilities.
- Marketing is governed by statutory language. Pointed out preference customers given priority but that surplus power is sold to the private utilities as well.
- Achievement of power resource goals constantly sought.
- Bureau of Reclamation is both a marketing and a construction agency for hydropower.

7. Tennessee Valley Authority Hydropower Activities

Mr. Jim Cross stated that TVA began with one hydroelectric plant and one steam turbine plant. Since 1950 the demand for electric power has increased to the point where hydropower could not support the need for power. Therefore fossil-fuel plants were constructed. Then in 1966, TVA filed an application to construct its first nuclear plant. Now TVA has commitments to develop 17 nuclear units. He stressed that he did not want to belittle hydropower because it provides by far the cheapest and most flexible power. Presently hydropower represents 17% of TVA's capacity, and cost to produce one kilowatt hour of power for TVA last year from the various sources was .6 mills for hydro, 10 mills for steam, 16 mills for purchased power, and 31 mills for gas turbine power. Besides cost advantages, he pointed out the advantage of the load following response characteristics of hydropower. He indicated that TVA planned to construct its first pumped storage project (Raccoon Mountain project) but is encountering considerable environmental opposition. He then stressed the following on-going activities in TVA:

- Looking at possible additions to existing projects to better utilize the hydropower potential. State-of-the-art permits this increase of capacity at about \$250/KW.
- Rewinding of generators has added 129 MW of capacity at the low cost of \$10/KW.
- Opposition from land owners in our investigations for a second pumped storage project.
- Possibility of plant up-rating and modification of existing hydroelectric units.

- Cost picture constantly changing but it appears that main hydro potential in TVA area has been developed.
- Hydro has been good to TVA. Investment made at \$175/KW.

8. ERDA Hydropower Activities

Mr. Phil McGee presented the current ERDA hydroelectric power program. He noted that the Agency's authority and responsibilities are for <u>research</u>, <u>development</u> and <u>demonstra-</u> <u>tion</u> relative to the commercial feasibility and practical applications for the use of energy.

ERDA's hydroelectric energy program is divided into three basic parts--tidal energy, underground pumped storage, and the more conventional hydroelectric technology.

The work in tidal energy consists of a study contract with the firm of Stone and Webster of Boston, Massachusetts. The contract runs from April 1976 through January 1977 and costs \$169,000. The purpose of the work is to provide an analysis-on a worldwide basis--of the present and long range outlook as to the cost of electrical energy generated from tidal power. The objectives of the report are: to report on the status of the technology as it exists today; to render expert judgment as to its potential use; determine the opportunities that exist within the United States for its use; determine whether or not research and development opportunities exist; and determine what the environmental, societal and legal consequences from a tidal project would be in today's environment.

The Agency's program in underground pump storage is as follows:

- ERDA is sponsoring a study being done by Argonne National Laboratory entitled "Selecting and Evaluating Pumped Hydro Storage Projects." The schedule for the study is from December 1975 through December 1976 and the contract cost is \$210,000.
- In addition, ERDA has a contract with Charles T. Main of Boston, Massachusetts for "Assessment of Technical and Economic Feasibility of Underground Pumped Hydroelectric Storage" on a national basis. The contract period is from August 1976 through May 1977 and the cost is \$165,000 and is shared by ERDA and the Bureau of Reclamation.

- Currently ERDA has a request for proposals (RFP) on the street for a preliminary engineering design and site exploration effort entitled "Compressed Air Energy Storage/Underground Pumped Hydro." This is a joint effort by ERDA and the Electric Power Research Institute (EPRI). Plans are to make a contract award in February 1977.
- The Agency is currently in the process of formulating a program in conventional hydroelectric technology and has in hand several unsolicited proposals. The proposals request to do work in the following areas of technology: study of hydroelectric potential through development of small hydroelectric sites; feasibility study using flowing streams and rivers to generate hydroelectric power; the potential of retrofitting unused low head dams; research to improve the efficiency of the impulse reaction turbine; and the study of the feasibility of preserving hydro storage head by evaporation reduction.

9. Panel Discussion - Marketing of Federal Hydroelectric Power

a. Mr. William Clagett provided a brief synoposis of Bonneville Power Administration (BPA) marketing. Highlights were:

- BPA provided last year some 82 billion kilowatt hours of electricity to 115 preference, 23 industrial, and 6 private utility customers. It markets the power from some 24,000 megawatts of federal generating capacity. Because of the historic cheapness of hydroelectric power, 50% of the total energy in the area is provided by BPA. However, BPA is now experiencing the transition that TVA has already made, namely development of generation alternatives to hydro because of constraints on hydro development in specific areas or because the potential is fully developed.
- One federal facility (Libby Dam re-regulation) is being added.
- There is the possibility of adding units on existing sites.
- Sometime in the future, pumped storage may be further exploited. There are some 9,000 MW of potential at existing sites. Also the Corps of Engineers has identified some 530 projects having pumped storage potential.

- BPA is planning to provide only 200 MW of additional firm power. All other will be for peak loads. Thermal generation will become the baseload in the future.
- Some of the constraints of BPA hydroelectric power generation are:
 - -- Realization factors (Discount 5-13% to account for river flow fluctuation).
 - -- Tourist accommodation (approximately 18,000,000 kilowatt-hours per year sacrificed).
 - -- Geese nesting (pool level controlled to insure nests not destroyed).
 - -- Fish spill for salmon survival (approximately 4-5 billion kilowatt-hours per year are sacrificed which is the equivalent of the output of a typical nuclear plant).
 - -- Intertie with Southwestern Power Administration investigated but realization factors limit practicality.

b. Mr. Emerson Harper briefly outlined the marketing of the Alaska Power, Southeastern Power, and Southwestern Power Administrations. Highlights were:

- (1) Alaska Power Administration:
- Has 77 megawatts of existing capacity.
- Has greatest potential for hydro development.
- Alaska's electrical demand seen as 15 billion kilowatthours minimum.
- Corps of Engineer's Upper Susitna project would add 1,500 megawatts capacity. Phase I design authorized on October 22, 1976. DOI will begin marketing studies for transmission, etc. Project would serve Anchorage and Fairbanks.

¥.

- Hydropower development in Alaska is constrained by the environmental acts such as Native Claims.
- (2) Southeastern Power Administration:
 - Provides 3 % of the regional needs.
 - Owns no transmission lines.
 - Cited projects under construction such as Carter, Laurel, and Russell.
 - Studying six pumped storage projects.
- (3) Southwestern Power Administration:
 - Markets power generated from 1917 MW of capacity.
 - Has 218 MW under construction.
 - Studying the feasibility of added units using planning figure of 2,600 hours/KW-year as opposed to 1,700 hours/KW-year.
 - May have about 4,000 MW of justifiable potential for pumped storage.

c. Mr. Raymond Harman outlined the marketing activities of the Bureau of Reclamation (BOR). Highlights were:

- BOR is primarily a water resource development agency for DOI. Power marketing is somewhat a sideline.
- Has 10,000 megawatts of capacity which serves some 450 customers.
- BOR has been in the power marketing business since 1906 (commercially since 1909).
- Owns 16,000 miles of transmission line. Interconnects with every major system in the western U.S.
- Actively participates in reliability councils, engages in planning with various power groups, makes load estimates for region.
- Currently sells firm power at about \$15/kilowatt-year for peak demand plus 3 to 4 mills/kwh. Have tried to maximize firm power to its wholesale customers.

•

- Added capacity will probably be marketed as "peaking without energy" meaning the customer returns energy at off peak time.
- BOR has experienced problems marketing power under this arrangement.
- Developing some 200 MW of pumped storage.
- Marketing in Colorado at \$25-30/kilowatt-year.
 Applications doubled the deliverable capacity.
- Explained that statutes governing BOR's marketing were designed to assist rural America and to provide power for irrigation and municipalities. The law says preference customers (public entities served first) are sold power at cost to the government and not what power is worth in today's changing energy picture.
- In response to questions, indicated that sale to highest bidder has been considered but would require changes in present laws.

d. Mr. William Telaar explained that Department of Agriculture (REA) is a lending authority. As of June 30, REA had some 8,000 MW of capacity with only about 60 MW being hydroelectric. The picture could change with more involvement in Alaska, e.g. Kodiak. REA is finding that purchasing power is not easy. He differentiated between power and energy. Power must be firm. He indicated that there is increased interest in small hydro units.

e. Discussion from the floor led to the following:

- In cost/benefit analysis, DOI is prohibited from considering cost escalation; FPC is not nor is ERDA.
- Long-term firm power contracts in the Southwestern Power Administration have restrained hydropower development. There is considerable thought of integrating high cost capacity with low cost capacity. It was reiterated that each Administration is governed by different laws. It was also pointed out that capacity could be added at sites such as Norfolk but the added capacity would not increase firm energy.

- In response to the question "Should federal power be sold at cost or at a profit depending on market conditions?", there was general recognition that it is a political issue. Tieing preference customers closer to the private power rates would generate considerable regional opposition. There was doubt expressed that uniform procedures could be established even if judged desirable.
- Opinion was expressed that load forecasts often are financial estimates especially in private sector. Net result is that regions such as Northwest may face a power shortage.
- Consensus was that a more balanced consideration of power costs with other costs on multipurpose hydro projects is needed. Value of power is low when compared with cost of private power.

10. Panel Discussion - Planning/Licensing/Regulatory Aspects of Hydroelectric Power.

a. Mr. Frank Davenport outlined the role of the Water Resources Council in coordinating water resources planning to include states as well as federal agencies. He stressed the need for comprehensive planning for land and water resources to obtain proper balance.

b. In response to the question "Is there a proper balance between energy and environmental considerations?", the following points were made:

- Substantial losses in time and money are incurred in the prolonged hearings on energy facilities. No real cost comparison is made of impacts of actions under Endangered Species, Wilderness areas, and Wild and Scenic Rivers Act. Examples given were loss of 1800 MW of potential at Blue Ridge Project and 3,500 MW between Glen Canyon and Hoover Dam. Wild and Scenic area considerations have constrained the Western Energy Expansion study, e.g. Benton site reduced to 1/5 the capacity of previous plans. Also, DOI has told FPC not to license projects on potential Wild and Scenic Rivers. No time frame is stated for length of time needed to study these potential WS&R*s.

- Principles and Standards provisions of the Water Resources Planning Act (PL 89-80) offer a vehicle to achieve a proper balance between energy and environmental considerations.
- Attitudes of local population impact heavily on development. Coordination at state and local level at early stages is essential.
- Socio-economic considerations of a project are highly important. Must be clearly highlighted.
- Influence of groups, such as Geothermal Institutional Panel, should be recognized. No
 such group exists for hydroelectric power.

c. In response to questions on planning aspects of the <u>Water</u> <u>Resources Development Act of 1976</u>, it was pointed out that it pertains only to Corps of Engineer projects and that the Hydroelectric Power Development Fund.

d. Some comments were made on Sen. Doc. 97. Opinion was expressed that portions of the restraints were self-inflicted. Point was made that cost-benefit analysis still does not include cost escalation of fuel.

e. In response to question "Who should take the lead on public education on value of pumped storage?", no agency volunteered nor did any consensus emerge as to who should. However, the value of pumped storage was recognized.

f. In response to the question "Is anything being done to to reduce the licensing/regulatory lag times associated with hydroelectric projects?", the following points were made:

- FPC is presently reviewing its regulations on applications for projects. Process is about 50% completed.
- Recognition is given to small projects versus major projects. 1,500 KW is the dividing line now. New legislation will propose 15,000 KW as the dividing line between major and minor projects. Also a dam height and storage capacity criteria will be included.
- Applications are being made for as low as 2 KW. This illustrated the need for a short form application.

- New regulations will include provisions for a discharge permit. The Corps of Engineers and FPC are closely coordinating. EIS requirements will be discussed in the regulations.
- When draft regulation are circulated, agencies are encouraged to coordinate promptly and efficiently.

11. Panel Discussion - R & D/Studies/Advanced Technology Requirements

- a. Research and Development efforts in progress were enumerated.
- REA has no real R & D but its cooperatives are receptive to any energy exchange. Definite interest has been expressed in small units (100-200 KW in size).
- BPA's research is predominately in transmission. Gave description of the 1100 KV line soon to be energized. BPA is examining physical problems associated with high voltage transmission. Has an 800 KV DC test system and a 500 KV underground test system.
- Corps of Engineers has no real R & D in the hydroelectric area. Its efforts have been primarily in identifying the study areas. There is a need to scrutinize more closely the institutional constraints. What is the value of stored water for alternative uses? Hydropower should be analyzed from a system approach rather than as single unit. A methodology study which would assure uniformity in national planning would be of value.
- DOI outlined its efforts in weather modification and the Western Energy Expansion Study.
- FPC pointed out the difficulties in determining dependable capacity. Also value of government projects are maintained at the same value over entire life span of project. Some study of this procedure is needed. FPC's early efforts in wind systems were outlined.

- Funds available for hydropower research were given as:

BPA - approximately \$300,000
 FPC - approximately \$100,000
 COE - approximately \$150,000
 ERDA - approximately \$554,000 (does not include cost of RFP currently out which will increase this dollar amount somewhere between \$750,000 and \$1,000,000).
 REA - none
 FEA - none

12. In summary it was agreed that Federal interagency work groups should be formed to examine the following areas in more detail:

- a. Institutional (federal and non-federal) constraints on hydroelectric development (consider small dam rehabilitation).
- Economic evaluation to include cost benefit formula using "life cycle" method of evaluation.
- c. Hydropower within the total water use planning and management.
- d. System interconnection (large-small).
- e. Inventory of small hydroelectric generation units.
- f. Optimum plant factor over time (years)
- g. System to establish economic benefits versus environmental cost criteria (NEPA, W & SR, Wilderness areas, siting constraints).
- h. System mix for maximum operational efficiency.
- i. Legislative needs for meaningful national hydro development program.
- j. Coordinated list of hydro potential sites throughout Federal agencies.
- k. Feasibility of large scale integration of solar (including wind) generated electricity into the Federal hydroelectric power systems.*
- 1. Determination of needed research and development.
- Note: FEA, in conjunction with other agencies, is examining the feasibility of the development of a large early market for solar (particularly wind) powered generation equipment to aid in the accelerated commercialization and increased use of these non-depletable energy resources.

FEA will contact the agencies to determine who should be the point of contact for these problem areas.

AGENDA

HYDROPOWER WORKSHOP

NOVEMBER 4, 1976

FEA (12th and Pennsylvania), Room 7132

TIME	SUBJECT	PRESENTOR- AGENC	Υ
9:00 - 9:15	Introductory Remarks	W. Rosenberg R. Hanfling	FEA FEA
9:15 - 9:20	Administrative Announcements	C. Jones	FEA
9:20 - 9:40	National Energy Outlook	D. Nissen	FEA
9:40 - 9:55	Federal Power Commission (FPC) Hydropower Activities Report	R. Corso N. Jennings	FPC FPC
9:55 - 10:10	Corps of Engineers (COE) Hydropower Activities Report	E. Lawhun	COE
10:10 - 10:25	Department of Interior (DOI) Hydropower Activities Report	W. Wilson	DOI
10:25 - 10:40	Coffee Break		
10:40 - 10:50	Tennessee Valley Authority (TVA) Hydropower Activities Report	J. Cross	TVA
10:50 - 11:00	Energy Research and Development Administration (ERDA) Hydropower Activities Report	P. McGee	ERDA
11:00 - 12:00	Panel Discussion - Marketing of Federal Hydroelectric Power	W. Claggett E. Harper R. Harman	DOI DOI DOI
12:00 - 1:00	Lunch	N. IEIdal	AEA
1:00 - 2:30	Panel Discussion - Planning/ Licensing/Regulatory Aspects of Hydroelectric Power	C. Olentine, FEA G. Fauss S. Zanganeh R. Corso J. Cross F. Davenport	Moderator DOI COE FPC TVA WRC

HYDROPOWER WORKSHOP AGENDA (Continued)

2:30 -	2:45	Coffee Break		`	•
2:45 -	4:15	Panel Discussion - R&D/ Studies/New Initiatives/ Advanced Technology Requirements	P. J. W. N.	McGee, ERDA Frederick Clagett Jennings	Moderator COE DOI FPC
4:15 -	4:30	Summary	с.	Jones	FEA

I BRAA

御後ので

LIST OF ATTENDEES

HYDROPOWER WORKSHOP

NOVEMBER 4, 1976

FEA (12th and Pennsylvania), Room 7132

CORPS OF ENGINEERS	•	
Frank Britnell	-	Construction Operations, Directorate of Civil Works
Jay Frederick	-	Technical Director of Institute of Water Resources
Robert Kinsel	-	Engineering Division, Directorate of Civil Works
William Knight	-	Planning Division, Directorate of Civil Works
Eugene Lawhun	-	Office of Policy, Directorate of Civil Works
Helen Ramatowski	-	Office of Policy, Directorate of Civil Works
Shapur Zanganeh	-	Engineering Division, Directorate of Civil Works
DEPARTMENT OF INTER	IOR	
William Clagett	-	Assistant Administrator, Bonneville Power Administration
Gerald Fauss	-	 Planning Division, Bureau of Reclamation
Raymond Harman	-	Chief, Division of Power, Bureau of Reclamation
J. Emerson Harper	-	Power Engineering Advisor to the Assistant Secretary - Energy and Minerals
Dick Porter	-	Bureau of Reclamation
William Wilson	-	Staff Assistant to the Assistant Secretary - Land and Water Resources

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

Barbara Allen	-	Office of Assistant Administrator for International Affairs
George Chang	-	Division of Energy Storage Systems, Assistant Administrator for Conservation
Jay Holmes	-	Office of the Assistant Administrator for Solar, Geothermal and Advanced Energy Systems
David Israel	-	Director, Office of Program Integration
Phil McGee	-	Division of Physical Research, Assistant Administrator for Solar, Geothermal and Advanced Energy Systems
FEDERAL ENERGY ADMI	NISTRATION	
Robert Borlick	-	Office of Coal, Nuclear and Electric Power Analysis
Elena Dougherty	-	Office of Utility Project Operations
George Grimes	-	Office of Utility Project Operations
Robert Hanfling	-	Deputy Assistant Administrator, Utility Projects
Curtis Jones	-	Director, Office of Utility Project Operations
David Nissen	-	Director, Energy Systems Modeling and Forecasting
Charles Olentine	-	Office of Utility Project Operations
William Rosenberg	-	Assistant Administrator, Energy Resource Development
Mike Rosenzweig	-	Office of Coal, Nuclear and Electric Power Analysis
Elaine Smith	-	Power Plant Acceleration Task Force
Samuel Taylor	-	Office of Energy Conversion

BEAN

S.

FEDERAL POWER COM	MISSION	
Ronald Corso	-	Division of Licensed Projects, Bureau of Power
Neal Jennings	-	Division of River Basins, Bureau of Power
RURAL ELECTRIFICA	TION ADMI	NISTRATION
Guan Hsiung	-	Power Plant Branch, Power Supply and Engineering Standards Division
Ben Jankowski	-	Chief, Power Plant Branch, Power Supply and Engineering Standards Division.
William Telaar	-	Power Supply and Engineering Standards Division.
TENNESSEE_VALLEY_	AUTHORITY	
J. L. Cross	-	Acting Chief, Power Supply Planning Branch
Jan Jansen	-	Power Supply Planning Branch
WATER RESOURCES C	OUNCIL	
Frank Davenport		Project Leader, Water Resources Council, Water for Energy Program

• •

(ana)

· •

NEO/77 OUTLINE

	<u>pter</u>	<u>s</u>	Lead
0.	Exe	cutive Summary	Christie
Ι.	Hig	hlights of the Past Year	Christie
-	Ά.	Historical Trends	
	Ŗ.	Highlights of Last Year	
II.	The	New Forecast	Christie
	Α.	Introduction	
	Β.	The Forecasting Model	
	с.	The Reference Forecast	
	D.	Scenario Discussion	
III.	Wor	ld Energy Markets	Borre'
	Ά.	Evolution Since the Embargo, Changing Economic Fatterns	Kraft
	Β.	U.S. and World Energy Trade Outlook	Pearson
	C.	Sensitivity Analysis	Treat
IV.	Ene Gro	rgy Demand, Conservation and Economic wth	MacRae
	Α.	Energy Demand	MacRae
	Β.	Effect of Conservation Programs	Hemphill
	C.	Effect of Energy Policy on the Economy	Kraft

V.	Fos	sil Fuel. Supply and Distribution	Freeman
	Α.	West Coast Oil Disposition	Adger
	Β.	OCS Development of Oil and Gas	Mayfield
	c.	Natural Gas Supply and Distribution	Rodgers
	D.	Coal Development and Distribution	Pendley
VI.	Ele	ctricity Demand and Supply	Eysymontt
	Α.	Electricity Demand (Update of NEO 76)	Lady
	Β.	Comparative Economics of Electricity Supply	Lady
	C.	Institutional Considerations in Electricity Supply	Hanfling
	D.	Financial Considerations in Electricity Supply	Feldman
VII.	Ene	rgy Development 1985-2000	Lady
	Α.	Interface with ERDA Plans and Analytical Activities	Lady
	Β.	Impact of Reserve Depletion	Rodgers
	C.	Contribution of Emerging Technologies	Kuhn
	D.	Energy Impacts on Economic Growth	Kraft

· · ·

App	endices	Lead
Α.	Overview of the Analysis Process	Greenberg
Β.	Demand	MacRae
C.	Oil and Gas Supply	Rodgers
D.	Refineries	Pearson
E.	Coal Supply	Pendley
F.	Electric Utilities	Borlick
G.	Nuclear Power	Walton
Н.	Emerging Technologies	Lady
I.	Conservation	Hemphill
J.	International Analysis	Pearson
К.	Economy/Energy Considerations	Kraft
L.	Capital Requirements	Santogrossi
Μ.	Scenario Description	Dearborn
N.	Output Report and Summary Tables	Greenberg
0.	Statistical Appendix	Curtis

Private Sector Hydroelectric Development in the United States

Ronald A. Corso Federal Power Commission, Washington, D. C.

Mr. Chairman, fellow panelists, and . guests of the Joint Power Generation Conference, I am pleased to have this opportunity to present to you some views on the potential for hydroelectric power development by the non-Federal or private sector of the electric power industry. I should mention at the outset that in using the term private development, I am speaking of all private and non-Federal public entities engaged in the development of hydroelectric projects.

Congress has authorized the Federal Power Commission to license all private hydroelectric developments which utilize navigable waters, occupy United States lands, use water or water power from a government dam, or affect the interests of interstate commerce. By this definition *and the interpretation of the Commission's authority by the Courts, this essentially means that virtually all privately developed hydroelectric projects are subject to the Commission's jurisdiction. This puts the Commission in the unique position of being apprised of the "state of the art" for private hydroelectric development. Information on private hydroelecric development is made available to he Commission in several ways, i.e. through applications for license and preliminary permits or through inquiries by potential applicants. I should at this point note, that, in addition to licenses, the Commission also issues preliminary permits. Such permits do not authorize construction, but they do offer the advantage of maintaining priority for filing an application for license while a Permittee studies the feasibility of a proposed project. Under the Federal Power Act, a preliminary permit may be issued for up to 3 years. However, a permit is not a necessary prerequisite to an application for license.

Based on available information, we believe there is reason to be optomistic about the future of hydroelectric development. As we all know, renewed interest in hydroelectric power has been generated by the present energy shortage. Hydroelectric power offers the most readily

Price:	Herbers \$1.50	All Rights
	Nonnembers \$2.00	Reserved
	At Meeting: \$1.00	by IEFF

A 76 603-1. A paper recommended and approved by the IEEE Power Generation Committee of the IEEE Power "ngineering Society for presentation at the IEEE/ SPI/ABCE Joint Power Generation Conference, Buffalo, ...,Y., September 19-23, 1976. Manuscript submitted May 13, 1976; made available for printing July 7, 1976. available energy source as an alternative to power that uses valuable non-renewable fuel resources. We hear a great clamor to develop new energy sources, such as solar power, wind power, and nuclear fusion, to name a few. These power sources may offer an answer to our energy needs in the future. Hydroelectric power presents an immediate solution, because it is a proven technology and the most efficient and reliable energy source available at this time.

Public utilities, consulting firms, Federal and other public agencies, and the Congress are acutely aware of this. For instance, many public utilities are studying possible developments and reassessing the potential for redevelopment of existing hydroelectric facilities. A number of consulting firms are studying the hydroelectric potential in many areas of the nation, particularly where fuel costs are excessive. The Federal Energy Administration, the Energy Research and Development Administration and the Federal Power Commission are actively encouraging the development of our hydroelectric power resources. Chairman Dunham of the Commission, in his speech this past April before the Southeastern Electric Exchange, indicated that the Commission will devote more of its energies to the electric utility industry, giving special attention to the potential of hydroelectric development. State agencies are encouraging hydroelectric development, particularly in Alaska where the State legislature approved a bill to assist the financing of hydroelectric projects through the use of oil revenues. In addition, Congress has a number of bills before it to encourage hydroelectric development. As with other power developments, hydroelectric power faces certain obstacles, particularly in the environmental area. However, with the combined efforts of all concerned and a commitment to seek solutions to environmental and other problems, a significant portion of the nation's hydroelectric potential can be realized.

I would now like to turn to a brief statistical summary of the hydroelectric potential. Recent statistics compiled by the Commission's Staff indicate that there is a potential for the development of 113,000 MW of capacity capable of producing 407 billion kWH annually. The existing installed hydroelectric capacity is about 66,000 MW. This represents over 13 percent of the nation's total installed generating capacity and produces 15 percent of the total generation. Approximately 35,000 MW of hydroelectric capacity

/ ∿' /}

has been licensed by FPC for private development. Licensed projects now under construction total about 3,000 MW. It is estimated that projects now under license lave a potential ultimate capacity of an additional 14,000 MW. The Commission also has before it in pending applications for license and preliminary permits, and under outstanding preliminary permits proposed projects totalling approximately 21,000 MW.

Table 1 lists applications for license pending before the Commission as of January 1976. You will note that of the total 10,286 MW of proposed capacity, there are over 9,000 MW of pumped-storage projects. This is a continuation of the trend which began in the last decade, and is a result of the economic benefits that a pumped-storage project offers in large electric systems, particularly when operated in conjunction with nuclear plants.

Table 1

Applications for License or Amendment of License Pending January 1976

FPC Proj. Ng.	Project Name	Applicant	Туре	Capacity (NN)
120	Big Creek Ho. 3	Southern Calif. Edison Co.	c	35
201	Blind Slough	City of Petersburg, Alaska	c	2.6
349	Martin	Alabama Power Co.	c	60
485	Bartlett's Ferry	Georgia Power Co.	С	100
1971	Hells Canyon	Idaho Power Co.	c	225
2016	Cowlitz River	City of Tacoma, Wash.	C	40.5
2245	Cannelton	City of Vanceburg, Ky.	c	70
2409	North Fork Stanislaus R.	Calaveras Co. Water District, Calif.	¢	320
2426	Castaic & Calif. Aqueduct	Dept. of Water Resources, Calif. and City of Los Angeles	C, PS	1509.1
2511	Redcliff	Colorado Water Conservation District	C	11.25
2614	Greenup	City of Vanceburg, Ky.	c	70
2709	Davis	Nonongahels Power Co. Potomac Edison Co. & West Penn Power Co.	P 5	1000
2716	Aath County	Virginia Electric and Power Co.	PS	2100
2725	Rocky Ht.	Georgia Power Co.	P S	675
2729	Breaksbeen	Power Authority of the State of New York	PS	1000
2735	Helms '	Pacific Gas & Electric Co.	75	1050
2740	Bad Creek	Duke Power Co.	P \$	1000
2742	Solomon Gulch	Copper Valley Electric Assoc., Inc., Alaska	C	18
2753	Ис. Норе	Jersey Central Power & Light Co.	P S	1000
		Subtotal - Conventiona Subtotal - Pumped-Stor Total	1 • ge	1261.45 9025.0 10.286.45

- Conventional Development

PS = Pumped-Storage Development

Table 2 lists outstanding preliminary permits where feasibility studies are underway for proposed projects having the potential to develop 5382.5 MW of capacity. Table 2 reflects the trend noted in Table 1, i.e. most of the projects would be pumped-storage facilities. We expect that most of these projects will be before the Commission under applications for license after feasibility studies are completed.

Table 2

Outstanding Preliminary Permits January 1976

	•			
FPC Proj. No.	Project Name	Permittee	Туре	Capacity (MW)
2718	Antilon Lake	.PUD No. 1 of Chelan County, Washington	PS	1000
2723	Brown's Canyon	PUD No. 1 of Douglas County, Washington	PS	1000
2728	Carlyle	Citica of Breese and Carlyle, Illinois	c	8
2733	Village Bend- DeCordova	Brazos Electric Power Coop., Inc., Texas	C,75	730
2734	Madison County	Carolina Power & Light Co.	PS	1000
2739	Meldahl	City of Vanceburg, Ky.	с	70
2741	Kings River	Kings River Irrigation District, Calif.	с	394.5
2746	Boyd County	Nebr. Public Power Dist.	PS	1000
2751	Gallipolis	Ohio Power Co.	с	40
2752	Kootenai Rive <i>r</i>	Northern Lights, Inc., Montana	C	140
		Subtotal - Conven Subtotal - Pumped	tional -Storage	712.5 4670.0 5382.5

Total

Table 3 lists applications for preliminary permit pending before the Commission as of January 1976. This Table lists proposed projects having a total installed capacity of 5464.5 MW. While the greater portion of the capacity listed in Table 3 would be developed by pumpedstorage projects, you will note that there are a greater number of conventional projects. This reflects the recent trend toward the development of projects which were either marginal or uneconomical, and reflects the impact created by high cost fossil fuels. Information from the electric utilities indicates that we can expect an increased interest in conventional developments. Information furnished by the industry also indicates that we can expect applications for license or preliminary permits for as much as 5,000 MW in the forseeable future.

To some, the prospect of additional developments beyond those now announced is not probable. They point to the long licensing process, economic constraints, and environmental opposition. This presents a substantial challenge. The Federal Power Commission has committed itself to decreasing the licensing process. We must also commit ourselves to seeking solutions to the economic and environmental problems that have stymied many hydroelectric developments.

Table 3

Applications for Preliminary Permit Pending January 1976

FPC Proj. <u>No.</u>	Project Name	Applicant	Type	Capacity (NW)
2730	Black Star	Southern Calif. Edison Co.	25	1235
2743	Terror Leke	Kodiak Electric Assoc., Inc., Alaska	C	30
2749	Randolph	Southside Electric Coop., Virginia	75	3575
2750	Black River	Town of Springfield, Vt.	c	22.5
2754	Ashuelot River	City of Keene, N.H.	c	18
2755	Thomas Bay	Thomas Bay Power Co., Alaska	c	38 (
2756/ 2764	Chace Mill	Green Mt. Power Corp./ City of Burlington, Vt.	C	6
2757	Juniper-Cross Mt.	Colorado Water Conservation District	C ·	78 '
2759	Rissiquoi	Swanton Village, Vt.	C,75*	80
2760	Power Creek	City of Cordova, Alaska	c	10
2761	South Fork American River	El Dorado County Water Agency, Calif.	C	300
2762	Mast Georgia	Central Vermont Public Service Corp.	C	10
2763	Sheephorn	City of Colden & Vidler Tunnel Co., Colorado	c	62
		Subtotal - Conven Subtotal - Pumped Total	tional -Storage	654.5 <u>4810.0</u> 5464.5

* Not included in Subtotal-Pumped-Storage

Present economic theory dictates that the lowest cost generating facility will be constructed next. This places marginal hydroelectric projects in a disadvantageous economic position, with the prospect that they may never be constructed. One is led to question this approach when you consider that the lower cost generating facility is usually using a non-renewable resource, such as coal or oil. Perhaps our economic theories should be evaluated with a view toward giving credit to hydroelectric developments for preserving non-renewable natural resources. We should also consider re-defining our economic comparisons to consider more realistically the useful life of a hydroelectric facility versus that of an alternative thermal plant. Experience indicates that we can expect a hydroelectric facility to last as much as 100 years with proper maintenance, whereas the life expectancy of a thermal plant is about 25 years. Proper consideration of this aspect would place a hydroelectric project in a more favorable economic position, and I believe, an appropriate position.

Environmental considerations have delayed or prevented the development of a number of hydroelectric projects. For example, after almost 20 years of consideration before the Commission, possible development of the Middle Snake River was terminated by conservation oriented legislation passed by Congress and signed by the President this past December. The Middle Snake River Project had an ultimate potential of about 3.5 million kW and 7 billion kWH. We must all agree that environmental considerations may dictate that certain projects should not be constructed. On the other hand, this is not an insurmountable obstacle for every project. We should look to those projects where environmental problems are at a minimum or can be mitigated in some way. Matters that deserve considerable attention are the development of the hydroelectric potential at existing dams and reservoirs and improved technology.

• The Commission recently issued two licenses for the installation of power facilities at government dams on the Ohio River. The minimal environmental consequences are evident and the potential is significant. These two projects, when operational, will save the equivalent of 1,000,000 barrels of oil per year.

There are three developments listed in Tables 1 and 2 which deserve special attention because they offer the prospect of overcoming some of the environmental problems we are encountering today. In its application for license for the 1000 MW Mt. Hope Pumped-Storage Project, Jersey Central Power & Light Co. proposes a high head facility with an underground reservoir. The proposed project would develop a gross head of 2400 feet using singlestage reversible units. This represents a significant step forward inasmuch as present installations develop up to about 1600 feet of gross head. If the equipment manufacturers can meet this challenge and deliver reliable equipment to operate under these conditions, many environmental problems will be solved. A 50 percent increase in operating head will result in a corresponding decrease in reservoir size. With less inundated land, there should be less environmental opposition. With equipment capable of operating under these conditions, many more potential sites are available from which to choose projects which are acceptable from both an engineering and environmental view point. Further, the prospect of developing pumped-storage projects with one or both reservoirs underground offers the potential of eliminating most environmental problems.

Table 2 lists the proposed 1000 MW Brown's Canyon Project located on Columbia River, Washington, now under study by Douglas County Public Utility District No. 1. This proposed project would also have an operating head of about 2400 feet and, therefore, offers some of the same advantages as the Mt. Hope Project. The Brown's Canyon Project would not be an underground facility. However, it would use as its lower reservoir the existing Lake Entiat, the reservoir of the FPC licensed Rocky Reach Project No. 2145. Table 1 also lists Pacific Gas & Electric Company's 1050 MW Helms Pumped-Storage Project which will utilize two existing reservoirs for its upper and lower pools.

3

Underground reservoirs, use of existing reservoirs, and greater operating heads are important areas where we can minimize environmental problems and delays in getng plants in service.

I suggest to you that with an increased effort and some innovative thinking, the hydroelectric potential of the nation can be realized at an ever faster pace.

The statistics I have presented indicate that the future of hydroelectric development is indeed encouraging. I hope that my brief remarks have stimulated you to also be encouraged. Obviously, hydroelectric power development is not a panacea to the energy shortage, nor is hydroelectric development without its problems. However, it is a viable, tangible energy resource which should be developed to its fullest practicable limit. To put the matter into perspective, the development of one-half of the nation's hydroelectric potential would save the equivalent of almost one million barrels of oil per day, the President's announced goal for energy independence. Therefore, while hydroelectric power will not become the major source of energy, it can make a very significant contribution to meeting the nation's energy needs.

I would like to thank you for the opportunity to speak before this conference on the nation's hydroelectric power potential.

墻

DATA ON HYDROELECTRIC POWER SITES IN THE UNITED STATES DEVELOPED AND UNDEVELOPED AS OF JANUARY 1, 1976

From Federal Power Commission

Inventory of Hydroelectric Power Resources

by

Neal C. Jennings

Interagency Hydropower Workshop Federal Energy Administration Washington, D.C. November 4, 1976

Note: The views expressed in this paper are those of the author and not necessarily represent the views of the Federal Power Commission or any of its members.

DATA ON HYDROELECTRIC POWER SITES IN THE UNITED STATES --DEVELOPED AND UNDEVELOPED AS OF JANUARY 1, 1976

In connection with river basin investigations made either in cooperation with various Federal agencies including the Corps of Engineers and the Bureau of Reclamation, or in the course of its licensing activities, the Federal Power Commission maintains up-to-date records on the Nation's hydroelectric power potential. The potential is based on a site-by-site inventory of all the river basins in the conterminous United States as well as in Alaska and Hawaii. Data on nearly 2,800 sites, both developed and undeveloped, are published every four years. The latest report, entitled "Hydroelectric Power Resources of the United States, Developed and Undeveloped," was published in 1972. A 1976 edition is nearing completion.

The possibility of developing any of the conventional undeveloped sites depends upon engineering, economic, environmental, and other considerations which may vary over time. Most sites have shown indications of engineering feasibility -- some have evidenced economic feasibility as well. Some sites are now receiving more favorable consideration due to recent fuel shortages and the increased costs of power from alternative sources. Many sites have not been analyzed sufficiently to evaluate their economic or environmental costs and benefits. The totals, however, do give an indication of the upper limit of the conventional water power potential of the country.

As of January 1, 1976, the total conventional hydroelectric power capacity in the United States, developed and available for development, was about 170.7 million kilowatts. Of that total about 57.0 million kilowatts was developed, including 26.5 million kilowatts in plants licensed by the FPC and 27.1 million kilowatts in Federal plants. Additionally, about 9.7 million kilowatts of reversible capacity were installed at pumped storage projects, including 8.5 million kilowatts under license and 0.6 million kilowatts in Federal plants.

Figures 1 and 2 show the distribution of the developed and undeveloped conventional hydro potential among major drainages and geographic divisions.

The following Summary Table shows the status of development and planning of conventional and pumped storage hydroelectric developments as of the beginning of 1976. Capacity equivalent to that planned or projected could possibly be added within the next two decades. This would bring the total installations to about 79.3 million kilowatts in conventional capacity and 37.3 million kilowatts in pumped storage capacity.

Tables I and II list the individual projects and sites included in the categories of Under Construction, Planned, and Other Projected in the Summary Table.

Attention is called to the fact that the data presented herein are provisional, subject to possible revision.

8

2

HYDROELECTRIC CAPACITY IN THE UNITED STATES

BY STATUS OF DEVELOPMENT AND PLANNING

(As of January 1, 1976)

		Installed Capacity Millions of Kilowatts				
		Conventional	Pumped Storage	<u>Total</u>		
Ï.	DEVELOPED	57.0	9.7	66.7		
II.	UNDEVELOPED1/			,		
	Under Construction Planned2/ Other Projected <u>3</u> / Subtotal	8.2 2.0 <u>12.1</u> 22.3	4.3 6.4 <u>16.9</u> 27.6	12.5 8.4 <u>29.0</u> 49.9		
	Remaining Undeveloped	91.4	-	-		
III.	TOTAL POTENTIAL	170.7	-	_		
				-		

- 1/ Includes 33.3 million kilowatts in Alaska and Hawaii and 11.2 million kilowatts designated for study and under moratorium for hydroelectric development under the Wild and Scenic Rivers Act; excludes 9.2 million kilowatts removed from FPC inventory as a result of the Wild and Scenic River Act and other special acts.
- 2/ Included in reports to FPC from the Regional Electric Reliability Councils, estimated to be installed by 1985.
- 3/ Undeveloped capacity not under construction or in reports of the Regional Electric Reliability Councils, but which have FPC license or permit status, are Federally authorized or recommended, or have structural provisions for plant additions.

¥ --

TABLE I – CONVENTIONAL HYDROELECTRIC PLANTS OR ADDITIONS UNDER CONSTRUCTION, PLANNED, OR PROJECTED – JANUARY 1, 1976 $^{\downarrow\prime}$

· · ·	Í · · · ·	· ·	<u> </u>			UNDER COM	STRUCTION	PLANN	€n ¥	OTHER PE	
PLANT	OWNER	RIVER	STATE	STATUS 21	FPC PRQJECT NO	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1.000 KWH	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1,000 KWH	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1,000 KWH
CORNELL CLARENCE F CANNON FONTANA WALLACE DAM LAUREL	NORTHERN STATES PWW CORPS OF ENGINEERS TENNESSEE VALLEY AUTH GEORGIA POWER CO CORPS OF ENGINEERS	CHIPPEWA SALT LIITLE TENN OCCNEE LAUREL	NIS MO NC GA KY	10 FA FA 10 FA	2639 2413	25,600x 27,000 13,500C 108,000 61,000	120,000 42,100 0 128,000 67,000			•	•
CHICKAMAUGA DOUGLAS CHEROKEE R L HARRIS NOXON RAPIDS	TENNESSEE VALLEY AUTH TENNESSEE VALLEY AUTH TENNESSEE VALLEY AUTH ALABAMA POWER CO WASHINGTON WTR PWR CO	TENNESSEE FRENCH BROAD HOLSTON TALLAPOOSA CLARK FK	TENN TENN TENN ALA MONT	FA FA LO LO	2628 2075	3,000G 2,80GG 4,650G 135,000 114,000A	0 0 169,000 107,000			3,0000	0
LIBBY CRYSTAL DAVIS(LAKE NOHAVE) BONNEVILLS 2ND PH ICE HARBOR	CORPS OF ENGINEERS BUREAU OF RECLAMATION BUREAU OF RECLAMATION CORPS OF ENGINEERS CORPS OF ENGINEERS	KOOTENAI GUNNISON COLORADO COLUMBIA SNAKE	MONT COLO ARIZ WASH WASH	FA FA FA FA FA	•	210,000A 28,000 3,000G 540,800A 111 000A	428,000 120,000 0 1,160,009 174,000	420,000A	859,000	3,0000	0
LOWER MONUMENTAL LITTLE COOSE LOWER GRANITE ROCK ISLAND CHIEF JOSEPH	CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS CHELAN CITY PUD NO 1 CORPS OF ENGINEERS	SNAKE SNAKE SNAKE COLUMBIA COLUMBIA	WASH WASH WASH WASH WASH	FA FA LO FA	943	405,000A 405,000A 405,000A 410,400A 1,045,000A	517,000 288,000 1,424,000 1,296,000 1,761,000				
GRAND COULEE LOST CREEK AUBURN NEW MELONES FYRAMID	SUREAU OF RECLAMATION CORPS OF ENGINEERS SUREAU OF RECLAMATION CORPS OF ENGINEERS CALLF DEPT WTR RES	COLUMBIA ROCUE N FK AMERICAN STANISLAUS W BR AQUEDUCT	WASH ORE CALIF CALIF CALIF	РА РА РА ГА Ца	2426	3,300,000A 49,000 300,000 300,000 157,000	6,025,000 303,000 360,000 385,000 852,000	17,000G	110,000		
COTTONWOOD DEVIL CANYON SILVIS LAKE BRUNSWICK-TOPSHAM RACINE	CALIF DEPT WTR RES CALIF DEPT WTR RES KETCHIKAN CITY OF CENTRAL MAINE PWR & LT OHIO POWER CO	E ER AQUEDUCT E BR AQUEDUCT SILVIS LAKE ANDROSCOCGIN OHIO	CALIF CALIF ALASKA ME OHIO	25222	2426 2426 1922 2284 2570	14,100 59,800a 2,100	114,000 390,000 6,300	9,700A 40,000	69,700 220,000		
RICHARD B BUSSELL GOAT ROCK BARTLETTS FERRY MARTIN DAM MITCHELL	CORPS OF ENGINEERS GEORGIA POWER CO GEORGIA POWER CO ALABAMA POWER CO ALABAMA POWER CO	Savannah Chattahoochee Chattahoochee Tallapoosa Coosa	GA GA GA ALA ALA	FA SP LA LA LO	2177 485 349 82			300,000 50,000A 60,000A 80,100A	467,000 35,000 42,000 119,000	67.000A 50,000k	25,000 30,000
AMISTAD LIBBY REREGULATOR BROWNLEE AMERICAN FALLS SEMINOE	IBWC/SO TEX & MEDINA CORPS OF ENGINEERS IDAHO POWER CO IDAHO POWER CO BUREAU OF RECLAMATION	RIO CRANDE KCGIENAI SNAKE SNAKE NORTH PLATTE	TEX MONT IDAHO IDAHO WYO	FA FR LA LO FA	- 1971 2736 -			32,000 50,400 225,000A 92,400 12,600A	66,000 180,000 123,000 400,000 3,300	48,000	90,000
HORŘOW POINT - Dyne Slath Water Syar Ross	BUREAU OF RECLAMATION BUREAU OF RECLAMATION BUREAU OF RECLAMATION BUREAU OF RECLAMATION SEATTLE DEPT LT	GUNNISON DIAHOND FK PIPE SIXTH WATER CR STRAWBERRY OFF SKAGIT	COLO UTAH UTAH UTAH WASH	FA FA FA LO	553			9,000C 33,000 90,000 10,500 300,000A	0 132,400 134,000 53,100 368,000		
MAYFIELD SAN LUIS OBISFO KERCKHOFF BIG CREEK NO 3 DICKEY-LINCOLN SCH	CITY OF TAKOMA CALIF DEPT WTR RES PACIFIC GAS & ELEC SO CALIF EDISON CORPS OF ENGINEERS	COWLITZ COASTAL AQUEDUCT SAN JOAQUIN REDINGER LAKE ST JOHNS	WASR CALIF CALIF CALIF MAINE	SP LA LO LA FA	2016 2426 96 120			40,500A 5,900 100,000A 35,000A	96,000 42,000 600,000 0	830,000	- 1,154,000
TOCKS ISLAND ST PETERSBURG MELDAHL GREENUP GALLIPOLIS L & D	CORPS OF ENGINEERS CORPS OF ENGINEERS VANCEBURG CITY OF VANCEBURG CITY OF OHIO POWER CO	DELAWARE CLARION OHIO OHIO OHIO	NJ PA OHIO OHIO OHIO	FA FR PO LA PO	2739 2614 2751					70,000 120,000 70,000 70,560 40,000	281,000 244,000 350,000 300,000 120,000
GARRISON FORT RANDALL BIG BEND OAHE GAVINS POINT	CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS	MISSOURI MISSOURI MISSOURI NISSOURI MISSOURI	N DAK S DAK S DAK S DAK NEBR	SP SP SP SP SP	-					212,000A 176,000A 330,000A 144,000A 33,300A	0 0 0 0
SALEM CHURCH GATHRIGHT LOWER BLUE RIDGE BLUE STONE ST STEPHEN	CORPS OF ENGINEERS CORPS OF ENGINEERS APPALACHIAN POWER CORPS OF ENGINEERS CORPS OF ENGINEERS	RAPPAHANNOC JACKSON NEW NEW SANTEE & COOPER	VA VA VA W VA SC	FA FA 10 FA FA	2317					89,000 49,000 200,000 180,000 84,000	161,000 54,700 0 447,000 418,000
HARTWELL WEST POINT LOWER VADA LOWER AUCHUNPKEE LAZER CREEK	CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS	SAVANNAH CHAITAHOOCHEE FLINT FLINT FLINT	GA GA GA GA	FA FA FR FA FA	•					66,000A 35,000A 28,000 77,000 83,000	100,000 68,000 167,000 122,000 121,000
SPEWRELL BLUFF ALLATOONA CELINA CANNELTON DEGRAY	CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS VANCEBURG CITY OF CORPS OF ENGINEERS	FLINT ETOYAR CUMBERLAND CHIO CADDO	GA GA KY KY ARK	РА ГА ГА ГА ГА	2245					100,000 36,000A 108,000 70,560 40,000A	160,000 26,000 280,000 340,000 86,600

SEE FOOTNOTES AT END OF TABLE

٠.

Provisional

TABLE I (Contd.) - CONVENTIONAL HYDROELECTRIC PLANTS OR ADDITIONS UNDER CONSTRUCTION, PLANNED, OR PROJECTED - JANUARY 1, 1976

[.	·					UNDER CO	NSTRUCTION	PLAN	×€D ⅔	OTHER PRO	NECTED 4
PLANT	OWNER	RIVER .	STATE .	STATUS _2/	PROJECT NO	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1,000 KWH	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1.000KWH	INSTALLED CAPACITY KW	AVERAGE ANNUAL GENERATION 1,000 KWH
NORFORK KAW DE CORDOVA BEND 3 DENISON ALLENSPUR	CORPS OF ENGINEERS CORPS OF ENGINEERS BRAZOS ELEC PWR CO CORPS OF ENGINEERS BUREAU OF RECLAMATION	N FORK ARKANSAS BRAZOS RED YELLOWSTONE	ARK OKLA TEX TEX MONT	FA FR PO FA FR	2733					85,000 25,000 60,000 105,000A 250,000	• 22,000 99,000 42,000 70,000 679,000
FORT PECK KOOTENAI DWORSHAK, GUFFEY	CORPS OF ENGINEERS NORTHERN LIGHTS CORPS OF ENGINEERS. BUREAU OF RECLAMATION IDAHO POWER	MISSOURI KOOTENAI N FK CLEARW SNAKE SNAKE	NONT MONT IDAHO IDAHO IDAHO	SP PO PA FR SP	2752	•	· .		•	185,000A 140,000 660,000A 85,000 25,000A	- 0 500,000 20,000 \$25,600 7,000
LYNN CRANDALL PALISADES SHERIDAN THIEF CREEK JUNIPER	BUREAU OF RECLAMATION BUREAU OF RECLAMATION BUREAU OF RECLAMATION BUREAU OF RECLAMATION COLO & WTR CONS DIS	SNAKE SNAKE Tongue Clark FK Yampa	IDAHO IDAHO WYO WYO COLO	FR SP FR FR PA	2757					240,000 135,000 25,000 125,200 45,000	821,000 267,000 92,000 510,000 150,000
CR055 HOUNTAIN MCCOY MIDDLE SULTAN UPPER SULTAN NINE FOOT CREEK	COLD R WTR CONS DIS CITY OF GOLDEN SNOROMISH COUNTY PUD SNOROMISH COUNTY PUD KLICKITAT COUNTY PUD	YAHPA Colorado Sultan Sultan White Salhon	COLO COLO WASH WASH WASH	PA PA LO LO LA	2757 2763 2157 2157 2157 2241					33,000 50,000 32,000 84,000 40,000	100,000 250,000 129,000 122,000 87,000
MOSSYROCK MERWIN YALE JOHN DAY PRIEST RAPIDS	CITY OF TACOMA PACIFIC PWR 5 LT PACIFIC PWR 5 LT CORPS OF ENGINEERS GRANT COUNTY PUD 1	CONLITZ LEWIS LEWIS COLUMBIA COLUMBIA	WASH WASH WASH WASH WASH	SP SP SP PA SP	2016 935 2071 2114					150,000A 60,000A 108,000A 540,000 473,100A	300,000 60,500 200,000 1,970,000 730,000
WANAPUH BOUNDARY MCMARY ZND PH HELLS CANYON OXBOW	GRANT COUNTY PUD I SEATTLE DEPT OF LT CORPS OF ENGINEERS IDAHO POWER IDAHO POWER	Columbia Pend Creill Columbia Snake Snake	WASH WASH OREG OREG OREG	SP SP FR SP SP	2114 2144 1971 1971					498,750a 275,500a 1,050,000a 130,500a 47,500a	1,540,000 425,000 300,000 40,000 47,500
KENO PINE FLAT SALHON FALLS COLCHA DAM ROGERS CROSSING	PACIFIC PWR & LT KINGS R CONSV DIST EL DORADO CCUNTY EL DORADO CCUNTY KINGS R CONSV DIST	KLAMATH Kings S FX American S FK American Kings	OREG CALIF CALIF CALIF CALIF	LO PO PA PA PO	2082 2741 2761 2761 2761					100,000 165,000 95,000 45,000 100,500	225.000 300.000 190.000 130.000 180.000
EL DORADO PLUM CREEK MARYSVILLE TABLE MOUNTAIN COLLIERVILLE PH	EL DORADO COUNTY EL DORADO COUNTY CORPS OF ENCINEERS CORPS OF ENGINEERS CALAVERAS COUNTY WTR	S FK AMERICAN S FK AMERICAN YUBA SACRAMENTO STANISLAUS	CALIF CALIF CALIF CALIF CALIF	PA PA FA FA LA	2761 2761 					80,000 80,000 50,000 54,000 75,000	328,000 240,000 250,000 287,000 253,000
BCARDS PH GANNS PH JUNGTION PEART TERROR LAKE	CALAVERAS COUNTY WTR CALAVERAS COUNTY WTR KINGS R CONVS DIST KINGS R CONVS DIST KODIAK ELEC ASSN INC	N FK STANISLAUS N FK STANISLAUS DINKEY CREEK DINKEY CREEK CANYON	CALIF CALIF CALIF CALIF ALASKA	LA LA PO PO PA	2409 2409 2741 2741 2743				•	97,500 50,000 39,000 50,000 30,000	487,000 205,000 238,000 241,600 184,000
DEVIL CANYON WATANA BRADLEY LAKE SNETTISHAM THOMAS BAY	CORPS OF ENGINEERS CORPS OF ENGINEERS CORPS OF ENGINEERS ALASKA POWER ADM THOMAS BAY PWR COPM	SUSITNA SUSITNA BRADLEY CREEK SPEEL THOMAS BAY	ALASKA ALASKA ALASKA ALASKA ALASKA	FR FR FA FA 7A	2755					738,000 478,000 63,900 27,000A 30,000	4,190.000 2,720,000 335,600 105,000 130,000
38 SITES SMALLER	THAN 25.000 KW									385,135	1,245,000
TOTALS						8,242,750	16,736,400	2,013,400	4.119,500	12,108,005	27,714,500

1/ CAPACITY AND GENERATION AT UNDEVELOPED SITES, EXCEPT "A" DENOTES ADDITION TO EXISTING PLANT AND "A" DENOTES ADDITION TO A PLANT FOR WHICH THE INITIAL INSTALLATION IS PRESENTLY UNDER WAY. "G" DENOTES REWIND ADDITION.

2/ LO-FPC LICENSE OUTSTANDING LA-FPC LICENSE OR AMENIMENT APPLIED FOR PO-FPC PRELIMINARY PERMIT CUTSTANDING PA-FPC PRELIMINARY PERMIT APPLIED FOR

4

FA-FEDERALLY AUTHORIZED FR-FEDERALLY RECOMMENDED SP-STRUCTURAL PROVISIONS FOR ADDITIONAL UNITS INCLUDED AT EXISTING PLANT BUT LICENSE AMENDMENT OR FEDERAL AUTHORIZATION REQUIRED PRIOR TO INSTALLATION

3/ DEVELOPMENTS INCLUDED IN REPORTS OF APRIL 1, 1976, TO THE FPC BY THE REGIONAL ELECTRIC RELIABILITY COUNCILS FOR COMPLETION BY 1985; PLANT DATA FROM FPC INVENTORY.

4/ POTENTIAL DEVELOPMENTS 25 MJ OR CREATER NOT UNDER CONSTRUCTION OR INCLUDED IN REPORTS OF THE REGIONAL ELECTRIC RELIABILITY COUNCILS BUT WHICH HAVE FPC LICENSE OR PERMIT STATUS, ARE AUTHORIZED OR RECOMMENDED FOR FEDERAL CONSTRUCTION, OR HAVE STRUCTURAL PROVISIONS FOR PLANT ADDITIONS.

5/ POSSIBLE ATLERNATIVE TO SWAN FALL REDEVELOPMENT. (NOT LISTED IN TABLES 2 & 4)

TABLE II – PUMPED STORAGE HYDROELECTRIC PLANTS OR ADDITIONS DEVELOPED,
UNDER CONSTRUCTION, OR PROJECTED – JANUARY 1, 1976

<u> </u>	•			Γ	FPC	REVERSIBLE CAPACITY - KW				TOTAL	
PLANT	OWNER	RIVER	STATE	STATUS	PROJECT NO	DEVELOPED	UNDER CONSTRUCTION	PLANNED 2	OTHER PROJECTED	TOTAL	CONVENTIONAL CAPACITY KW
BEAR SWAMP NORTHFIELD MT ROCKY RIVER BLENHEIM-GILBOA LEWISTCN-NIAGARA	NEW ENGLAND POWER CO CONN LIGHT & PWR CO CONN LIGHT & PWR CO POWER AUTH STATE OF NY POWER AUTH STATE OF NY	DEFRFTELD CONNECTICUT ROCKY SCHOHARTE CR NTAGARA	MASS MASS CONN NY NY	LO LO LA LO LO	2669 2485 2632 2685 2216	600,000 1,000,000 7,000 1,000,000 240,000			-	600,000 1,000,000 7,000 1,000,000 240,000	24,000 1,953,900
YARDS CREEK MUDDY RUN KINZUA LUDINGTON TAUM SAUK	JERSEY CNTL PWR & LT PHILA ELEC PWR ET AL PENN ELEC & CLEV ELEC CONSUMERS POWER CO UNION ELECTRIC CO	DELAWARE Susquehanna Allegheny Lake Mich E FK Black	NJ PENN PENN MICH MO	10 10 10 10	2309 2355 2280 2680 2277	388,961 800,000 396,000 1,978,800 408,000		•		388,961 800,000 396,000 1,978,800 408,000	26,100
UPPER SMITH MT HIWASSEE Jocassee Degray Salina	APPALACHIAN POWER CO TENNESSEE VALLEY AUTH DUKE POWER CO CORPS OF ENGINEERS GRAND RIVER DAM AUTH	ROANOKE HIWASSEE REOWEE CADDO GRAND	VA NC SC ARK OKLA	LO FA LO FA LO	2210 2503 2524	132,050 59,500 612,000 28,000 260,000	104,000		260,000	236,050 59,300 612,000 28,000 520,000	300,200 57,600 <u>4/</u> 80,000
BUCHANAN FLAT IRON 3 O'NEILL CABIN CREEK MORMON FLAT	LOWER CO RIV AUTH BUREAU OF RECLAMATION BUREAU OF RECLAMATION PUBLIC SERVICE CO SALT R PROJ PWR DIST	COLORADO CO BIG THOM DIV DELTA MENDOTA SO CLEAR CR SALT	TEXAS COLO COLO COLO ARIZ	FA FA LO	2351	11,250 8,500 25,200 300,000 48,645				11,250 8,500 25,200 300,000 48,645	22,500 - 9,200
HORSE MESA GRAND COULEE THERMALITO Edward G Hyatt Gastaic	SALT R PROJ PWR DIST BUREAU OF RECLAMATION CALIF DEPT OF WTR RES CALIF DEPT OF WTR RES LA CITY 5 ST OF CALIF	SALT-GILA Columbia Feather Div Feather Div Castaic Cr	ARIZ WASH CALIF CALIF CALIF	FA LO LO LA	2100 2100 2126	99,878 100,000 82,500 293,250 425,000	850,000	200,000		99,878 300,000 82,500 293,250 1,275,000	34,155 65,200 702,000 56,000
SAN LUIS SENATOR WASH HARRY S TRUMAN CLARENCE CANNON FAIRFIELD	BUREAU OF RECLAMATION BUREAU OF RECLAMATION CORPS OF ENGINEERS CORPS OF ENGINEERS SO CAROLINA ELEC & GAS	SAN LUIS CR Senator Wash Csage Salt Frees CR BD	CALIF CALIF MO MO SC	FA FA FA LO	1894	424,000 7,200	160.000 31.000 518,400			424,000 7,200 160,000 31,000 518,400	- 4/ 27,000
WALLACE DAN CARTERS RACCOON MT HT ELBERT MONTEZUMA	GEORGIA POWER CO CORPS OF ENGINEERS TENNESSEE VALLEY AUTH BUREAU OF RECLAMATION ARIZONA POWER AUTH	OCONEE COOSAWATTEE TENNESSEE ARK CANAL GILA OFFSTRM	GA GA TENN COLO ARIZ	LO FA FA FA LO	2413 - 2573		216.000 250.000 1.530.000 100.000 505.400	100,000		216,000 250,000 1,530,000 200,000 505,400	108,000 250,000 - -
BREAKABEEN BOYD COUNTY BATH COUNTY DAVIS BAD CREEK	POWER AUTH STATE OF NY NEBRASKA PUBLIC PWR VIRGINIA ELEC & PWR MONONGANELA PWR CO DUKE POWER CO	SCHOHARIE CR MISSOURI BACK CREEK BLACKWATER BAD CREEK	NY NEBR VA W VA SC	14 P0 14 14	2729 2746 2716 2709 2740			1,000,000 1,000,000 2,100,000 1,000,000	1,000,000	1,000,000 1,000,000 2,100,000 1,000,000 1,000,000	-
ROCKY MOUNTAIN HELMS MISSISQUOI CORNWALL MOUNT HOPE	CEORCIA POWER CO PACIFIC GAS & ELEC SWANTON VILLAGE OF CONSOLIDATED EDISON JERSET CNIL PWR & LI	HEATH CREEK KINGS MISSISQUOI HUDSON RIVER WHITE MEADOW	GA CALIF VT NY NJ	LA LA PA LO LA	2725 2735 2759 2338 2753			1,050,000	675,000 80,000 2,000,000 1,000,000	675,000 1,050,000 80,000 2,000,000 1,000,000	÷.
ST PETERSBURG PRAIRIE CREEK TURNIP-FALLING RANDOLPH-HUNTING ROANOKE-WALLACE	CORPS OF ENGINEERS BUREAU OF RECLAMATION SOUTHSIDE ELEC COOP SOUTHSIDE ELEC COOP SOUTHSIDE ELEC COOP	CLARION PLATTE OFFSTRM TURNIP CR ROANOKE ROANOKE	PENN NEBR VA VA VA	FR FA PA PA PA	- 2749 2749 2749		-		300,000 16,800 830,000 1,260,000 780,000	300,000 16,800 830,000 1,260,000 780,000	120,000
CUB CREEK MOLLYS-SENECA CR UPPER BLUE RIDGE ROWLESBURG GREEN RIVER PROJ	SOUTHSIDE ELEC COOP SOUTHSIDE ELEC COOP APPALACHIAN POWER CO COOPS OF ENGINEERS EPIC INC	CUB CREEK Seneca Creek New River Cheat Green	VA VA VA W VA NC	PA PA LO FA PA	2749 2749 2317 2700				800,000 420,000 1,600,000 350,000 500,000	800,000 420,000 1,600,000 350,000 500,000	- - - -
MADISON COUNTY SPEWRELL BLUFF VILLAGE BEND BROWNS CANYON BLACK STAR	CAROLINA PWR & LT CORPS OF ENGINEERS BRAZOS ELEC PWR COOP PUD NO 1 DOUCLAS CO SO CALIF EDISON	SUGARCAMP BR FLINT BRAZOS COLUMBIA SANTIAGO CR	NC GA TEXAS WASH CALIF	PO FA PO LA PA	2734 2733 2753 2730				2,000,000 50,000 730,000 1,000,000 1,235,000	2,000,000 50,000 730,000 1,000,000 1,235,000	100,000
TOTALS						9,735,734	4,264,800	6,450,000	16,886,800	37,337,334	

1/ LO-FPC LICENSE OUTSTANDING LA-FPC LICENSE OR AMEMEMENT APPLIED FOR PO-FPC PRELIMINARY PERMIT OUTSTANDING

.

PA-FPC PRELIMINARY PERMIT APPLIED FOR FA-FEDERALLY AUTHORIZED FR-FEDERALLY RECOMMENDED

2/ DEVELOPMENTS INCLUDED IN REPORTS OF APRIL 1, 1976, TO THE FPC BY REGIONAL ELECTRIC RELIABILITY COUNCILS; PLANT DATA FROM FPC INVENTORY.

2/ POTENTIAL DEVELOPMENTS NOT UNDER CONSTRUCTION OR INCLUDED IN REPORTS OF THE REGIONAL ELECTRIC RELIABILITY COUNCILS BUT WHICH HAVE FPC LICENSE OR PERMIT STATUS, OR ARE AUTHORIZED OR RECOMMENDED FOR FEDERAL CONSTRUCTION.

4/ REVERSIBLE CAPACITY SHOWN COULD BE USED FOR CONVENTIONAL CENERATION.

8.20

TABLE I

Potential Hydropower Development Categories

	Category	Capacity (MW)	Average Annual * Energy (MWh).
A	Operational project with authorized hydropower additions	2,036	597,074
В	Projects under con- struction with authorized hydro- power additions	74	141,000
C	Projects under con- struction or operational which require hydropower authorization	8,841	12,692,770
D	Projects authorized with power but not yet under construction or operational	2,997	5,249,800
E	Projects requiring reauthorization because of a change in capacity	546	795,000
F	Potential projects not yet authorized but having hydropower capability	106,021	266,632,992
G	Detached pumped- storage projects	130,245	11,706,392
	TOTALS	250,760	297,814,958

* Total energy potential understated. Energy data not available for all projects.

1

·

·

DEPARTMENT OF THE INTERIOR

Raymond Peck - Deputy Assistant Secretary - Energy and Minerals William R. Wilson - Office of the Secretary - Land and Water Resources Emerson Harper - Office of the Secretary - Energy and Minerals William Clagett - Bonneville Power Administration Gerald Faust - Bureau of Reclamation Raymond Harman - Bureau of Reclamation

Interior Power Marketing Agencies Bonneville Power Administration Bureau of Reclamation Southwestern Power Administration Southeastern Power Administration Alaska Power Administration

GENERAL POWER RESOURCE GOALS

Generate and market power at Federal multipurpose projects to assist in recovering Federal investment and to optimize resource use.

Stimulate planning, construction and operation of electric power facilities to provide an adequate and reliable supply of electric energy.

Coordinate integration of Federal with non-Federal projects.

INTERIOR'S POWER CUSTOMERS (approximately)

Preference (public power)	756
Útilities (private)	56
Federal Facilities	48
Industries served	23

INTERIOR'S ELECTRIC POWER PROGRAMS

SUPPORT POWER FACILITIES WHEN ECONOMICALLY FEASIBLE

IN MULTIPURPOSE HYDRO PROJECTS

MARKET ELECTRIC POWER GENERATED AT CORPS OF

ENGINEERS AND BUREAU OF RECLAMATION DAMS

ENCOURAGE NECESSARY RESEARCH - EHV TRANSMISSION (1,100 KV) & EFFICIENCY AND RELIABILITY STUDIES

CONSTRUCT, OPERATE AND MAINTAIN FACILITIES NECESSARY

TO MARKET POWER

COORDINATION OF POWER PLANNING, DESIGN AND POOLING

POWER MARKETING OPERATIONS FY 1976

Agency	Gross revenues (in millions)	Marketed capacity (MW)	Miles trans. <u>lines</u> (in thousands)	Energy Marketed (Billions of KW-HRS)	Percent of generation in the area
Southeastern	\$ 48	2,401		8.1	3
Alaska	2.1	77	.09	.2	10 & 50
Southwestern	51	1,917	· 2	3.9	5
Reclamation	270/1	7, 709 <u>/2</u>	16	38.0	3-35 (in 5 areas)
Bonneville	302	13,618	13	83.6	50
Total	\$ 673.1	25,722	31	133.8	

/1 Excludes sales to BPA of \$8.4 million

<u>12</u> Reclamation generation capacity of 9,659 MW less marketed to BPA of 4,030 MW plus Corps of Engineers generation of 2,048 MW and IBWC of 31.5 MW. Includes Navajo generation.

9

.